6-regular Frobenius circulants and Eisenstein-Jacobi networks

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Australia sanming@unimelb.edu.au

GTCA 2013, Tongliao, 12-14/7/2013

• Hypothesis

- An interconnection network is modelled by a graph
- The structure of an interconnection network affects its performance

From Frobenius, Eisenstein, Jacob to Mendelsohn

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

• Hypothesis

- An interconnection network is modelled by a graph
- The structure of an interconnection network affects its performance
- **Question**: What network topologies should we use in order to achieve high performance?

Frobenius, Eisenstein, Jacob to Mendelsohn

From

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

• Hypothesis

- An interconnection network is modelled by a graph
- The structure of an interconnection network affects its performance
- **Question**: What network topologies should we use in order to achieve high performance?
- It depends on how we measure performance:
 - degree-diameter problem
 - expandability
 - etc.

From Frobenius, Eisenstein, Jacob to Mendelsohn

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

• Hypothesis

- An interconnection network is modelled by a graph
- The structure of an interconnection network affects its performance
- **Question**: What network topologies should we use in order to achieve high performance?
- It depends on how we measure performance:
 - degree-diameter problem
 - expandability
 - etc.
- We will consider two measures:
 - minimum gossiping time under the store-and-forward, all-port and full-duplex model
 - minimum edge-congestion for all-to-all routing

From Frobenius, Eisenstein, Jacob to Mendelsohn

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

• Hypothesis

- An interconnection network is modelled by a graph
- The structure of an interconnection network affects its performance
- **Question**: What network topologies should we use in order to achieve high performance?
- It depends on how we measure performance:
 - degree-diameter problem
 - expandability
 - etc.
- We will consider two measures:
 - minimum gossiping time under the store-and-forward, all-port and full-duplex model
 - minimum edge-congestion for all-to-all routing
- What are the 'most efficient' graphs (of 'small' degree) with respect to these measures?

From Frobenius, Eisenstein, Jacob to Mendelsohn

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Motivation

From Frobenius.

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Given a network $\Gamma = (V, E)$, design a data transmission route (oriented path) for each ordered pair of vertices.

• A set \mathcal{R} of such oriented paths is called an all-to-all routing.

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Given a network $\Gamma = (V, E)$, design a data transmission route (oriented path) for each ordered pair of vertices.

- A set \mathcal{R} of such oriented paths is called an all-to-all routing.
- Load of an edge = number of paths traversing the edge in either direction

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Given a network $\Gamma = (V, E)$, design a data transmission route (oriented path) for each ordered pair of vertices.

- A set \mathcal{R} of such oriented paths is called an all-to-all routing.
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge.

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Given a network $\Gamma = (V, E)$, design a data transmission route (oriented path) for each ordered pair of vertices.

- A set ${\mathcal R}$ of such oriented paths is called an all-to-all routing.
- Load of an edge = number of paths traversing the edge in either direction
- An arc is an oriented edge.
- Load of an arc = number of paths traversing the arc in its direction

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Edge- and arc-forwarding indices

• $L(\Gamma, \mathcal{R}) = maximum$ load on an edge

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- $L(\Gamma, \mathcal{R}) = maximum \text{ load on an edge}$
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- $L(\Gamma, \mathcal{R}) = maximum \text{ load on an edge}$
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index π_m(Γ): same as π(Γ) but use shortest paths only

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- $L(\Gamma, \mathcal{R}) = maximum$ load on an edge
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index $\pi_m(\Gamma)$: same as $\pi(\Gamma)$ but use shortest paths only
- $\overrightarrow{\mathcal{L}}(\Gamma, \mathcal{R}) = maximum \text{ load on an arc}$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- $L(\Gamma, \mathcal{R}) = maximum$ load on an edge
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index $\pi_m(\Gamma)$: same as $\pi(\Gamma)$ but use shortest paths only
- $\overrightarrow{L}(\Gamma, \mathcal{R}) = maximum \text{ load on an arc}$
- Arc-forwarding index $\vec{\pi}(\Gamma) = \min_{\mathcal{R}} \vec{L}(\Gamma, \mathcal{R})$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- $L(\Gamma, \mathcal{R}) = maximum$ load on an edge
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index $\pi_m(\Gamma)$: same as $\pi(\Gamma)$ but use shortest paths only
- $\overrightarrow{L}(\Gamma, \mathcal{R}) = maximum \text{ load on an arc}$
- Arc-forwarding index $\vec{\pi}(\Gamma) = \min_{\mathcal{R}} \vec{L}(\Gamma, \mathcal{R})$
- Minimal a.f. index $\vec{\pi}_m(\Gamma)$: same as $\vec{\pi}(\Gamma)$ but use shortest paths only

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Edge- and arc-forwarding indices

- $L(\Gamma, \mathcal{R}) = maximum$ load on an edge
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index $\pi_m(\Gamma)$: same as $\pi(\Gamma)$ but use shortest paths only
- $\overrightarrow{L}(\Gamma, \mathcal{R}) = maximum \text{ load on an arc}$

 τ

- Arc-forwarding index $\vec{\pi}(\Gamma) = \min_{\mathcal{R}} \vec{L}(\Gamma, \mathcal{R})$
- Minimal a.f. index $\vec{\pi}_m(\Gamma)$: same as $\vec{\pi}(\Gamma)$ but use shortest paths only
- In general,

$$\pi_m(\Gamma) \neq \pi(\Gamma), \overrightarrow{\pi}_m(\Gamma) \neq \overrightarrow{\pi}(\Gamma)$$
$$\pi(\Gamma) \neq 2\overrightarrow{\pi}(\Gamma), \pi_m(\Gamma) \neq 2\overrightarrow{\pi}_m(\Gamma)$$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u, v \in V} d(u, v)}{|E|}$$

and equality holds iff there exists an edge-uniform shortest path routing.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u, v \in V} d(u, v)}{|E|}$$

and equality holds iff there exists an edge-uniform shortest path routing.

$$\vec{\pi}_m(\Gamma) \ge \vec{\pi}(\Gamma) \ge \frac{\sum_{u,v \in V} d(u,v)}{2|E|}$$

and equality holds iff there exists an arc-uniform shortest path routing.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{u, v \in V} d(u, v)}{|E|}$$

and equality holds iff there exists an edge-uniform shortest path routing.

$$\vec{\pi}_m(\Gamma) \ge \vec{\pi}(\Gamma) \ge \frac{\sum_{u,v \in V} d(u,v)}{2|E|}$$

and equality holds iff there exists an arc-uniform shortest path routing.

Question

A: Which graphs can achieve these bounds?

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Gossiping

Problem: Each vertex has a distinct message to be sent to all other vertices. Carry out this in minimum number of time steps.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Each vertex has a distinct message to be sent to all other vertices. Carry out this in minimum number of time steps.

Gossiping

Assume the store-and-forward, all-port and full-duplex model:

- a vertex must receive a message wholly before transmitting it to other vertices;
- 'all-neighbour transmission' at the same time step;
- bidirectional transmission on each edge;
- no two messages can transmit over the same arc at the same time;
- it takes one time step to transmit any message over an arc.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs **Problem**: Each vertex has a distinct message to be sent to all other vertices. Carry out this in minimum number of time steps.

Assume the store-and-forward, all-port and full-duplex model:

- a vertex must receive a message wholly before transmitting it to other vertices;
- 'all-neighbour transmission' at the same time step;
- bidirectional transmission on each edge;
- no two messages can transmit over the same arc at the same time;
- it takes one time step to transmit any message over an arc.

Definition

 $t(\Gamma) = minimum \text{ time steps required}$

Gossiping

A trivial lower bound

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs For any graph Γ with *n* vertices and minimum degree k,

$$t(\Gamma) \ge \left\lceil \frac{n-1}{k} \right\rceil.$$

A trivial lower bound

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs For any graph Γ with *n* vertices and minimum degree k,

$$t(\Gamma) \geqslant \left\lceil \frac{n-1}{k} \right\rceil.$$

Question

B: Which graphs can achieve this bound?

Cayley graphs

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Definition

Let G be a group, and let $S \subset G$ be such that $1 \notin S$ and $s^{-1} \in S$ for all $s \in S$.

The Cayley graph Cay(G, S) is defined to have vertex set G such that $x, y \in G$ adjacent if and only if $xy^{-1} \in S$.

A circulant graph is a Cayley graph on a cyclic group.

Semidirect product

Definition

Let H and K be groups such that H acts on K (as a group) via a homomorphism $H \rightarrow Aut(K)$.

The semidirect product of K by H, denoted K.H, is the group on $K \times H$ under the operation:

$$(k_1, h_1)(k_2, h_2) := (k_1 k_2^{h_1^{-1}}, h_1 h_2)$$

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Semidirect product

Definition

Let H and K be groups such that H acts on K (as a group) via a homomorphism $H \rightarrow Aut(K)$.

The semidirect product of K by H, denoted K.H, is the group on $K \times H$ under the operation:

$$(k_1, h_1)(k_2, h_2) := (k_1 k_2^{h_1^{-1}}, h_1 h_2).$$

Equivalently, if G is a group and

 $K \trianglelefteq G, H \leqslant G, G = HK, H \cap K = 1,$

then G = K.H.

Frobenius graphs

6-regular Frobenius

Frobenius versus Eisenstein-Jacobi

Frobenius groups

Aotivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Definition

A Frobenius group is a transitive group such that

- there exist non-identity elements fixing one point,
- but only the identity element can fix two points.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Frobenius groups

Definition

A Frobenius group is a transitive group such that

- there exist non-identity elements fixing one point,
- but only the identity element can fix two points.

Theorem

(Thompson 1959) A finite Frobenius group G on V has a nilpotent normal subgroup K (Frobenius kernel) which is regular on V. Thus

G = K.H (semidirect product),

where H is the stabiliser of a point of V.

Frobenius graphs

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Definition (Solé 94, Fang-Li-Praeger 98) Let G = K.H be a finite Frobenius group. Let

$$S = \begin{cases} a^{H}, & |H| \text{ even or } |a| = 2 \text{ [first-kind]} \\ a^{H} \cup (a^{-1})^{H}, & |H| \text{ odd and } |a| \neq 2 \text{ [second-kind]} \end{cases}$$

for some $a \in K$ satisfying $\langle a^H \rangle = K$, where a^H is the *H*-orbit on *K* containing *a*.

Call Cay(K, S) a *G*-Frobenius graph.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Partial answer to Question A

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Partial answer to Question A

- d: diameter of Cay(K, S)
- n_i: number of H-orbits of vertices at distance i from 1 in Cay(K, S), i = 1,..., d

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Partial answer to Question A

- d: diameter of Cay(K, S)
- n_i: number of H-orbits of vertices at distance i from 1 in Cay(K, S), i = 1,..., d

Theorem

(Solé, Fang-Li-Praeger 98) Let $\Gamma = Cay(K, S)$ be a Frobenius graph. Then

$$\pi(\Gamma) = \frac{\sum_{u,v \in V} d(u,v)}{|E|} = \begin{cases} 2\sum_{i=1}^{d} in_i, & [first-kind] \\ \sum_{i=1}^{d} in_i, & [second-kind] \end{cases}$$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem

(Zhou 09)

Let $\Gamma = Cay(K, S)$ be a first-kind G-Frobenius graph. Then there exists a routing which is

- (a) a shortest path routing;
- (b) *G*-arc transitive;
- (c) both edge- and arc-uniform;
- (d) optimal for π , $\overrightarrow{\pi}$, $\overrightarrow{\pi}_m$, π_m simultaneously.

Moreover, if the H-orbits on K are known, we can construct such routings in polynomial time. Furthermore, we have

$$\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma) = 2\sum_{i=1}^d in_i.$$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs • Our algorithm can produce many routings satisfying (a)-(d).
Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- Our algorithm can produce many routings satisfying (a)-(d).
- The formula for *π*_m and a result of Diaconis-Stroock imply the following:

Corollary

Let Γ , d, n_i be as above. Then the spectral gap of Γ satisfies

$$|H| - \lambda_2(\Gamma) \ge \frac{|K|}{d\sum_{i=1}^d in_i},$$

where λ_2 is the second largest eigenvalue.

Theorem

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Partial answer to Question B

(Zhou 09) Let $\Gamma = Cay(K, S)$ be a first-kind G-Frobenius graph. Then

$$t(\Gamma) = \frac{|\mathcal{K}| - 1}{|\mathcal{S}|}.$$

Moreover, there exist optimal gossiping schemes such that
(a) messages are always transmitted along shortest paths;
(b) at any time every arc is used exactly once for message transmission;

(c) at any time ≥ 2 and for any vertex g, the set A(g) of arcs transmitting the message originated from g is a matching of Γ, and {A(g) : g ∈ K} is a partition of the arcs of Γ.

Furthermore, if we know the H-orbits on K, then we can construct such schemes in polynomial time.

Motivation

From Frobenius,

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

- 6-regular Frobenius circulants
- Frobenius versus Eisenstein-Jacobi
- Rotational circulants and Mendelsohn designs

• First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.

Motivation

From Frobenius.

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

- First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.
- We have developed a more general framework.

Motivation

From Frobenius.

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

- First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.
- We have developed a more general framework.
- We also obtained results on second-kind Frobenius graphs with Fang.

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

- First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.
- We have developed a more general framework.
- We also obtained results on second-kind Frobenius graphs with Fang.
- It would be good to construct concrete families of first-kind Frobenius graphs of small degree.

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

- First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.
- We have developed a more general framework.
- We also obtained results on second-kind Frobenius graphs with Fang.
- It would be good to construct concrete families of first-kind Frobenius graphs of small degree.
- A classification of 4-regular first-kind Frobenius circulants was given by Thomson and Zhou in 2008.

Motivation

From Frobenius

Eisenstein, Jacob to Mendelsohn

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

- First-kind Frobenius graphs are 'perfect' as far as routing and gossiping are concerned.
- We have developed a more general framework.
- We also obtained results on second-kind Frobenius graphs with Fang.
- It would be good to construct concrete families of first-kind Frobenius graphs of small degree.
- A classification of 4-regular first-kind Frobenius circulants was given by Thomson and Zhou in 2008.
- We will focus on 6-regular first-kind Frobenius circulants.

6-regular circulants

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

- Let n ≥ 7 and a, b, c be integers such that 1 ≤ a, b, c ≤ n − 1 and a, b, c, n − a, n − b, n − c are pairwise distinct.
- The 'triple-loop' network TL_n(a, b, c) is defined to have vertex set Z_n such that

 $x \sim x \pm a, x \sim x \pm b, x \sim x \pm c \pmod{n}$.

• We consider $TL_n(a, b, 1)$ only.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Geometric triple-loop network

Definition

(Yebra, Fiol, Morillo and Alegre 85) $TL_n(a, b, c)$ is geometric if

$$a'+b'+c'\equiv 0 \mod n$$

for some
$$a' \in \{a, n - a\}, b' \in \{b, n - b\}, c' \in \{c, n - c\}.$$

Hexagonal tessellation of $TL_{49}(31, 1, 30)$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Rotational Cayley graphs

Definition

(Bermond, Kodate and Pérennes 96) A complete rotation of Cay(K, S) is an automorphism of K which fixes S setwise and induces a cyclic permutation on S.

Cay(K, S) is rotational if it admits a complete rotation.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem

(Thomson and Zhou 08-12+)

Let $n \ge 7$ be an integer.

Then there exists a 6-regular first kind Frobenius circulant $TL_n(a, b, 1)$ of order n (with cyclic kernel) if and only if $n \equiv 1 \mod 6$ and

$$x^2 - x + 1 \equiv 0 \mod n \tag{1}$$

has a solution.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem (cont'd) Moreover, if this condition holds, then

(a) each prime factor of n is congruent to 1 modulo 6;

(b) each solution a to the equation above gives rise to a 6-regular first kind Frobenius circulant TL_n(a, b, 1), and vice versa, with b ≡ a − 1 mod n; TL_n(a, a − 1, 1) is a rotational, geometric, Z_n.H-arc-transitive and first-kind Z_n.H-Frobenius graph admitting [a] and -[a²] as complete rotations, where

$$H = \langle [a] \rangle = \{\pm [1], \pm [a], \pm [a-1]\};$$
(2)

(c) there are exactly 2^{l-1} pairwise non-isomorphic 6-regular first kind Frobenius circulants of order n, where l is the number of distinct prime factors of n.

Motivation

Frobenius graphs

- 6-regular Frobenius circulants
- Frobenius versus Eisenstein-Jacobi
- Rotational circulants and Mendelsohn designs

Optimal routing, gossiping and broadcasting

- We gave optimal routing and gossiping schemes for *TL_n(a, a - 1, 1)* by specifying our general theory and using knowledge of *H*-orbits on Z_n.
- Such knowledge was obtained through a link with Eisenstein-Jacobi networks.
- Formula for edge-forwarding index is messy.
- Gossiping time = (n-1)/6
- Broadcasting time = diameter + (2 or 3)

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

An illustration of optimal routing and gossiping: Constructing the 'canonical' spanning tree T_0 for $TL_{n_d}(3d + 1, 1, -(3d + 2))$, where $n_d = 3d^2 + 3d + 1$.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

HARTS (hexagonal meshes)

- A distributed real-time computing system [Chen, Shin and Kandlur, *IEEE Trans. Computers* 39 (1) (1990) 10-18].
- Physically built at the Real-Time Computing Laboratory, The University of Michigan.
- Properties studied in [Dolter, Ramanathan and Shin, IEEE Trans. Computers, 40 (6) (1991) 669-680] and [Albader, Bose and Flahive, IEEE Trans. Parallel Distrib. Syst. 23 (1) (2012) 69-77]
- It belongs to the family of 6-regular first-kind Frobenius circulants.
- Actually it is not new.

6-regular Frobenius circulants

- Denote $n_k = 3k^2 + 3k + 1$, where $k \ge 2$.
- (Yebra, Fiol, Morillo and Alegre 85)
 - $TL_{n_k} = TL_{n_k}(3k+2,3k+1,1)$ has the maximum possible order among all 6-regular geometric circulants of diameter k.
- (Thomson and Zhou 10) $TL_{n_{\nu}}$ is a first-kind Frobenius graph.
- The HARTS H_k of size k has diameter k-1 and n_{k-1} vertices [CSK], and is isomorphic [CSK, ABF] to the circulant Cay($\mathbb{Z}_{n_{k-1}}, S$), where

$$S = \{\pm [k-1], \pm [k], \pm [2k-1]\}.$$

• $H_k \cong TL_{n_{k-1}}$

.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

EJ networks

Another research group who came up with a closed related family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Transactions on Information Theory* **53** (2007), 3042-3052.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

EJ networks

Another research group who came up with a closed related family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Transactions on Information Theory* **53** (2007), 3042-3052.

•
$$\rho = (1 + \sqrt{-3})/2$$

- $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)
- $\alpha = \mathbf{a} + \mathbf{b}\rho \in \mathbb{Z}[\rho] \setminus \{\mathbf{0}\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)
- $\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$
- $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

EJ networks

Another research group who came up with a closed related family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for metrics induced by circulant graphs, *IEEE Transactions on Information Theory* **53** (2007), 3042-3052.

•
$$\rho = (1 + \sqrt{-3})/2$$

- $\mathbb{Z}[\rho] = \{x + y\rho : x, y \in \mathbb{Z}\}$ (Eisenstein-Jacobi integers)
- $\alpha = \mathbf{a} + \mathbf{b}\rho \in \mathbb{Z}[\rho] \setminus \{\mathbf{0}\}$
- $N(\alpha) = a^2 + ab + b^2$ (norm)

•
$$\mathbb{Z}[\rho]_{\alpha} = \mathbb{Z}[\rho]/(\alpha)$$

• $H_{\alpha} = \{\pm [1]_{\alpha}, \pm [\rho]_{\alpha}, \pm [\rho^2]_{\alpha}\}$

Definition

EJ network: $EJ_{\alpha} = Cay(\mathbb{Z}[\rho]_{\alpha}, H_{\alpha})$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs Theorem (Thomson and Zhou 08-12+)

 $\{ 6\text{-regular first kind Frobenius circulants} \}$ = $\{ EJ_{a+b\rho} : N(a+b\rho) \equiv 1 \mod 6, a \text{ and } b \text{ coprime} \}$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs Theorem (Thomson and Zhou 08-12+)

 $\{6\text{-regular first kind Frobenius circulants}\}\ =\ \{EJ_{a+b\rho}: N(a+b\rho) \equiv 1 \mod 6, a \text{ and } b \text{ coprime}\}\$

We do not know whether non-Frobenius EJ networks also admit 'perfect' routing, gossiping and broadcasting schemes.

Covers

Frobenius, Eisenstein, Jacob to Mendelsohn

From

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem

(Thomson and Zhou 08-12+) Let $\alpha, \beta \in \mathbb{Z}[\rho]$ be nonzero such that $N(\alpha) \ge 7$.

Then $EJ_{\alpha\beta}$ is an $N(\beta)$ -fold cover of EJ_{α} and can be constructed from EJ_{α} .

Corollary

(Thomson and Zhou 08-12+) Let $\alpha = c + d\rho \in \mathbb{Z}[\rho]$ with $7 \leq N(\alpha) \equiv 1 \mod 6$ that is not an associate of any real integer. Denote

$$\ell=\gcd(c,d),\;c'=c/\ell,\;d'=d/\ell,\;\alpha'=c'+d'\rho.$$

Then EJ_{α} is an ℓ^2 -fold cover of a 6-regular first-kind Frobenius circulant that is isomorphic to $EJ_{\alpha'}$.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem

(Thomson and Zhou 08-12+) Let $n \ge 7$ be an integer all of whose prime factors are congruent to 1 modulo 6.

Let m be a proper divisor of n.

Then any first-kind Frobenius $TL_n(a, a - 1, 1)$ is an n/m-fold cover of a smaller first-kind Frobenius $TL_m(a_m, a_m - 1, 1)$.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Rotational Cayley graphs

A complete rotation of Cay(K, S) is an automorphism ω of K which fixes S setwise and induces a cyclic permutation on S.

An element $g \in K$ is a fixed point of ω if $g \neq 1$ and there exists *i* such that $g^{\omega^i} = g$.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Rotational Cayley graphs

A complete rotation of Cay(K, S) is an automorphism ω of K which fixes S setwise and induces a cyclic permutation on S.

An element $g \in K$ is a fixed point of ω if $g \neq 1$ and there exists *i* such that $g^{\omega^i} = g$.

Theorem

(Bermond, Kodate and Pérennes 1996) If Cay(K, S) admits a complete rotation whose fixed point set is an independent set and not a vertex-cut, then

$$t(\mathsf{Cay}(\mathcal{K}, \mathcal{S})) = \left\lceil \frac{|\mathcal{K}| - 1}{|\mathcal{S}|} \right\rceil$$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem (Zhou 2009)

Let Cay(K, S) be a connected Cayley graph. Suppose that there exists $H \leq Aut(K)$ that

- H fixes S setwise and is regular on S;
- K\({x ∈ K : H_x = 1} ∪ {1}) is an independent set and not a vertex-cut of Γ.

Then

$$t(\mathsf{Cay}(K,S)) = \left\lceil \frac{|K|-1}{|S|}
ight
ceil.$$

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Classification of rotational first-kind Frobenius circulants

Theorem

- (A. Thomson and S. Zhou 2013+) Let $n = p_1^{e_1} \dots p_l^{e_l}$ and $D = \gcd(p_1 - 1, \dots, p_l - 1)$.
 - (a) \exists a rotational first-kind Frobenius circulant with kernel \mathbb{Z}_n and degree d iff n is odd and d is an even divisor of D.

(b) $\varphi(d)^{l-1}$ such circulants (pairwise non-isomorphic)

(c) Each is isomorphic to $Cay(\mathbb{Z}_n, \langle [h] \rangle)$, where $h = \sum_{i=1}^{l} \frac{n}{p_i^{e_i}} b_i h_i$, with $b_i(n/p_i^{e_i}) \equiv 1 \pmod{p_i^{e_i}}$ and $h_i \equiv \eta_i^{m_i \varphi(p_i^{e_i})/d} \pmod{p_i^{e_i}}$ for a fixed primitive root η_i modulo $p_i^{e_i}$ and an integer m_i coprime to d.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Balanced regular Cayley maps

Definition

A map is a 2-cell embedding of a connected graph on an orientable surface.

A cyclic permutation ρ of S induces a natural embedding of Cay(G, S), giving a Cayley map $M = CM(G, S, \rho)$.

M is balanced if $\rho(s^{-1}) = \rho(s)^{-1}$ for $s \in S$, and regular if Aut(*M*) is regular on the set of arcs of Cay(*G*, *S*).

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Balanced regular Cayley maps

Definition

A map is a 2-cell embedding of a connected graph on an orientable surface.

A cyclic permutation ρ of S induces a natural embedding of Cay(G, S), giving a Cayley map $M = CM(G, S, \rho)$.

M is balanced if $\rho(s^{-1}) = \rho(s)^{-1}$ for $s \in S$, and regular if Aut(*M*) is regular on the set of arcs of Cay(*G*, *S*).

Complete rotation in a Cayley graph \leftrightarrow 2-cell embedding on a closed orientable surface as a balanced regular Cayley map

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Balanced regular Cayley maps

Definition

A map is a 2-cell embedding of a connected graph on an orientable surface.

A cyclic permutation ρ of S induces a natural embedding of Cay(G, S), giving a Cayley map $M = CM(G, S, \rho)$.

M is balanced if $\rho(s^{-1}) = \rho(s)^{-1}$ for $s \in S$, and regular if Aut(*M*) is regular on the set of arcs of Cay(*G*, *S*).

Complete rotation in a Cayley graph \leftrightarrow 2-cell embedding on a closed orientable surface as a balanced regular Cayley map

Theorem

(A. Thomson and S. Zhou 2013+)

We know exactly when a first-kind Frobenius circulant can be embedde on a closed orientable surface as a balanced regular Cayley map.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Mendelsohn through Frobenius

Definition

- (a) A (v, k, λ)-Mendelsohn design, (v, k, λ)-MD, consists of a set X of v points and a collection B of cyclically ordered k-subsets (blocks) of X such that every ordered pair of points are consecutive in exactly λ blocks.
- (b) A (v, k, λ)-MD (X, B) is ℓ-fold perfect if, for t = 1,..., ℓ, every ordered pair of elements of X appears t-apart in exactly λ blocks. A (v, k, λ)-MD is perfect, (v, k, λ)-PMD, if it is (k − 1)-fold perfect.
- (c) A (v, k, λ) -MD is resolvable, (v, k, λ) -RMD, if $v \equiv 0$ mod k and the set of blocks can be partitioned into $\lambda(v-1)$ parts each containing v/k pairwise disjoint blocks, or $v \equiv 1 \mod k$ and the set of blocks can be partitioned into λv parts each containing (v-1)/kpairwise disjoint blocks.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem (F. D. Hsu and S. Zhou 2013+)

- (a) A (v, k, 1)-RMD exists for all integers $v \ge 3, k \ge 2$ with $v \equiv 1 \mod k$ such that there exist a finite Frobenius group K.H with order |K| = v and an element ϕ of H with order k.
- (b) This (v, k, 1)-RMD is (p(k) 1)-fold perfect, where p(k) is the smallest prime factor of k.

(c) If k is a prime, then it is a (v, k, 1)-RPMD.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Theorem (F. D. Hsu and S. Zhou 2013+)

(a) A (v, k, 1)-RMD exists for all integers $v \ge 3, k \ge 2$ with $v \equiv 1 \mod k$ such that there exist a finite Frobenius group K.H with order |K| = v and an element ϕ of H with order k.

(b) This (v, k, 1)-RMD is (p(k) - 1)-fold perfect, where p(k) is the smallest prime factor of k.

(c) If k is a prime, then it is a (v, k, 1)-RPMD.

Theorem

(F. D. Hsu and S. Zhou 2013+) Let $v = p_1^{e_1} \dots p_t^{e_t} \ge 3$. A (v, k, 1)-RPMD exists for every prime factor k of $gcd(p_1^{e_1} - 1, \dots, p_t^{e_t} - 1)$.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

Corollary

(F. D. Hsu and S. Zhou 2013+)

Let k be a fixed prime.

For any primes $p_1, \ldots, p_t \equiv 1 \mod k$ and any integers $e_1, \ldots, e_t \ge 1$, there exists a $(p_1^{e_1} \ldots p_t^{e_t}, k, 1)$ -RPMD.

By the well known Dirichlet prime number theorem, there are infinitely many primes congruent to 1 modulo k.

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

References

A. Thomson and S. Zhou, *European J. Combin.*, to appear, http://arxiv.org/pdf/1205.5877v2.pdf (6-regular case)

—, Frobenius circulant graphs of valency four, *J. Austral. Math. Soc.* 85 (2008) 269–282. (4-regular case)

S. Zhou, A class of arc-transitive Cayley graphs as models for interconnection networks, *SIAM J. Discrete Math.* 23 (2009) 694–714. (general theory)

X. G. Fang and S. Zhou, Gossiping and routing in second-kind Frobenius graphs, *European J. Combin.* 33 (2012) 1001–1014. (second-kind Frobenius graphs)

A. Thomson and S. Zhou, Rotational circulant graphs, http://arxiv.org/pdf/1302.6652v1.pdf

D. F. Hsu and S. Zhou, Resolvable Mendelsohn designs and Frobenius groups, in prepration.
From Frobenius, Eisenstein, Jacob to Mendelsohn

Motivation

Frobenius graphs

6-regular Frobenius circulants

Frobenius versus Eisenstein-Jacobi

Rotational circulants and Mendelsohn designs

THANK YOU