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Hypothesis
e An interconnection network is modelled by a graph
e The structure of an interconnection network affects its
performance
Question: What network topologies should we use in
order to achieve high performance?
It depends on how we measure performance:
o degree-diameter problem
e expandability
e etc.
We will consider two measures:
e minimum gossiping time under the store-and-forward,
all-port and full-duplex model
e minimum edge-congestion for all-to-all routing
What are the ‘most efficient’ graphs (of ‘small’ degree)
with respect to these measures?
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Problem: Given a network I' = (V/, E), design a data
transmission route (oriented path) for each ordered pair of
vertices.

e A set R of such oriented paths is called an all-to-all
routing.

e Load of an edge = number of paths traversing the edge in
either direction

e An arc is an oriented edge.

e Load of an arc = number of paths traversing the arc in its
direction
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Edge- and arc-forwarding indices

L(T',R) = maximum load on an edge

Edge-forwarding index (') = ming L(I', R)

Minimal e.f. index mpm(I'): same as 7(I") but use shortest
paths only

T(F,R) = maximum load on an arc

Arc-forwarding index 7 (I') = ming T(F,R)

Minimal a.f. index 7 ,(I"): same as 7 (I") but use shortest
paths only

In general,
Tm(l) # w(0), Tm(l) # 7 ()

w(F) #27 (1), () # 27 m(I)
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Trivial lower bounds

Zu,vev d(uv V)

|E|
and equality holds iff there exists an edge-uniform shortest path
routing.

Tm(F) = () =
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Trivial lower bounds

Zu,vev d(uv V)
|E|

and equality holds iff there exists an edge-uniform shortest path
routing.

Tm(F) = () =

ZU,VEV d(u7 V)
2|E|

and equality holds iff there exists an arc-uniform shortest path
routing.

T () = 7() >

Question
A: Which graphs can achieve these bounds?
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Assume the store-and-forward, all-port and full-duplex model:
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transmitting it to other vertices;

e ‘all-neighbour transmission’ at the same time step;

e bidirectional transmission on each edge;

e no two messages can transmit over the same arc at the
same time;

e it takes one time step to transmit any message over an arc.
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Gossiping
Problem: Each vertex has a distinct message to be sent to all
other vertices. Carry out this in minimum number of time

steps.
Assume the store-and-forward, all-port and full-duplex model:

e a vertex must receive a message wholly before
transmitting it to other vertices;

e ‘all-neighbour transmission’ at the same time step;

e bidirectional transmission on each edge;

e no two messages can transmit over the same arc at the
same time;

e it takes one time step to transmit any message over an arc.
Definition

t(I') = minimum time steps required
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A trivial lower bound

For any graph ' with n vertices and minimum degree k,

t(F)Z[nzll.

Question
B: Which graphs can achieve this bound?
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Definition
Let G be a group, and let S © G be such that 1 ¢ S and
sleSforallses.

The Cayley graph Cay(G, S) is defined to have vertex set G
such that x, y € G adjacent if and only if xy~1 € S.

A circulant graph is a Cayley graph on a cyclic group.
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Definition
Let H and K be groups such that H acts on K (as a group) via
a homomorphism H — Aut(K).

The semidirect product of K by H, denoted K.H, is the group
on K x H under the operation:

h71
(ki, h1)(ko, ho) := (kiky , hihy).
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Semidirect product

Definition
Let H and K be groups such that H acts on K (as a group) via
a homomorphism H — Aut(K).

The semidirect product of K by H, denoted K.H, is the group
on K x H under the operation:

h71
(ki, h1)(ko, ho) := (kiky , hihy).

Equivalently, if G is a group and
KdG,HLG,G=HK,Hn K =1,

then G = K.H.
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A Frobenius group is a transitive group such that
e there exist non-identity elements fixing one point,

e but only the identity element can fix two points.
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Frobenius groups

Definition
A Frobenius group is a transitive group such that
e there exist non-identity elements fixing one point,

e but only the identity element can fix two points.

Theorem

(Thompson 1959) A finite Frobenius group G on V has a
nilpotent normal subgroup K (Frobenius kernel) which is
regular on V. Thus

G = K.H (semidirect product),

where H is the stabiliser of a point of V.
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Frobenius graphs

Definition
(Solé 94, Fang-Li-Praeger 98)
Let G = K.H be a finite Frobenius group. Let
af, |H| even or |a| =2 [first-kind]
S =
a U (a7Y)H, |H| odd and |a| # 2 [second-kind]

for some a € K satisfying (a") = K, where a' is the H-orbit
on K containing a.

Call Cay(K,S) a G-Frobenius graph.
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Frobenius e d: diameter of Cay(K,S)
raphs
o e n;: number of H-orbits of vertices at distance i/ from 1 in

Cay(K,S),i=1,....d

Theorem
(Solé, Fang-Li-Praeger 98)
Let T = Cay(K,S) be a Frobenius graph. Then

d . -y
w(l) = M _ 2Zi:l inj,  [first-kind]
! Sy ini, [second-kind]
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Theorem

(Zhou 09)

Let T = Cay(K,S) be a first-kind G-Frobenius graph. Then
there exists a routing which is

(a) a shortest path routing;

(b) G-arc transitive;

(c) both edge- and arc-uniform;

(d) optimal for w, T, T m, T™m simultaneously.

Moreover, if the H-orbits on K are known, we can construct
such routings in polynomial time. Furthermore, we have

d
m() =27 (1) = 27 m(F) = m(T) = 2 ) in;.
i=1
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e Our algorithm can produce many routings satisfying
- (a)-(d).
graphs e The formula for 7 ,, and a result of Diaconis-Stroock
imply the following:

Corollary
Let ', d, n; be as above. Then the spectral gap of I' satisfies

K
[HI = A2(T) = 7|d L
d2lizy ini

where Xy is the second largest eigenvalue.
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Partial answer to Question B

Theorem
(Zhou 09)
Let T = Cay(K,S) be a first-kind G-Frobenius graph. Then
K|—1
t(r) =
5]

Moreover, there exist optimal gossiping schemes such that

(a) messages are always transmitted along shortest paths;

(b) at any time every arc is used exactly once for message
transmission;

(c) at any time > 2 and for any vertex g, the set A(g) of arcs
transmitting the message originated from g is a matching
of I', and {A(g) : g € K} is a partition of the arcs of T.

Furthermore, if we know the H-orbits on K, then we can
construct such schemes in polynomial time.
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graphs

Remarks

First-kind Frobenius graphs are ‘perfect’ as far as routing
and gossiping are concerned.

We have developed a more general framework.

We also obtained results on second-kind Frobenius graphs
with Fang.

It would be good to construct concrete families of
first-kind Frobenius graphs of small degree.

A classification of 4-regular first-kind Frobenius circulants
was given by Thomson and Zhou in 2008.

We will focus on 6-regular first-kind Frobenius circulants.
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e Let n> 7 and a, b, ¢ be integers such that
6-regular
v 1<ab,c<n—1anda,b,c,n—a,n—b,n—c are

Frobenius
circulants

pairwise distinct.
e The ‘triple-loop’ network TLp(a, b, c) is defined to have
vertex set Z, such that

X~xtax~xtbx~xztc (mod n).

e We consider TL,(a, b,1) only.
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e (Yebra, Fiol, Morillo and Alegre 85) TL,(a, b, c) is geometric if
Frobenius , , ,
graphs a+b+c =0 modn
6-regular
Frobenius
circulants for some &' € {a,n— a}, b’ € {b,n— b},c’ € {c,n— c}.
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Jacobi 5
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TPETI2ET]

Hexagonal tessellation of TLag(31,1,30)
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Rotational Cayley graphs

Definition

(Bermond, Kodate and Pérennes 96)

A complete rotation of Cay(K,S) is an automorphism of K
which fixes S setwise and induces a cyclic permutation on S.

Cay(K,S) is rotational if it admits a complete rotation.
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Theorem
(Thomson and Zhou 08-12+)

Let n = 7 be an integer.

Then there exists a 6-regular first kind Frobenius circulant
TL,(a, b,1) of order n (with cyclic kernel) if and only if n =1
mod 6 and

x> ~x+1=0 modn (1)

has a solution.
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Theorem
(cont'd)
Moreover, if this condition holds, then

(a) each prime factor of n is congruent to 1 modulo 6;

(b) each solution a to the equation above gives rise to a

6-regular first kind Frobenius circulant TL,(a, b,1), and
vice versa, with b=a—1 mod n; TLp(a,a—1,1) is a
rotational, geometric, Z,.H-arc-transitive and first-kind
Zn.H-Frobenius graph admitting [a] and —[a?] as
complete rotations, where

H = ([a]) = {£[1], £[a], £[a — 1]}; (2)

there are exactly 2'~' pairwise non-isomorphic 6-regular
first kind Frobenius circulants of order n, where | is the
number of distinct prime factors of n.
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Optimal routing, gossiping and
broadcasting

We gave optimal routing and gossiping schemes for
TLp(a,a—1,1) by specifying our general theory and using
knowledge of H-orbits on Z,.

Such knowledge was obtained through a link with
Eisenstein-Jacobi networks.

Formula for edge-forwarding index is messy.
Gossiping time = (n—1)/6
Broadcasting time = diameter + (2 or 3)
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(3d+2)(d=2)+2

(3d+2)(d-1)+1

An illustration of optimal routing and gossiping: Constructing
the ‘canonical’ spanning tree T for
TLn,(3d +1,1,—(3d +2)), where ny = 3d? + 3d + 1.
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e A distributed real-time computing system [Chen, Shin and
Kandlur, IEEE Trans. Computers 39 (1) (1990) 10-18].
?}Lefeunlifs e Physically built at the Real-Time Computing Laboratory,
crednss The University of Michigan.
e Properties studied in [Dolter, Ramanathan and Shin, IEEE
Trans. Computers, 40 (6) (1991) 669-680] and [Albader,
Bose and Flahive, IEEE Trans. Parallel Distrib. Syst. 23
(1) (2012) 69-77]
e |t belongs to the family of 6-regular first-kind Frobenius
circulants.

e Actually it is not new.
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e (Yebra, Fiol, Morillo and Alegre 85)
TL,, = TL,,(3k 4+ 2,3k +1,1) has the maximum possible
order among all 6-regular geometric circulants of diameter

6-regular k

Frobenius

circulants e (Thomson and Zhou 10) TL,, is a first-kind Frobenius
graph.

e The HARTS Hj of size k has diameter k — 1 and nx_1
vertices [CSK], and is isomorphic [CSK, ABF] to the
circulant Cay(Z,, ,,S), where

S = {#[k — 1], £[k], £[2k — 1]}.

o Hy~TL

Nk—1
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EJ networks

Another research group who came up with a closed related
family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for
metrics induced by circulant graphs, IEEE Transactions on
Information Theory 53 (2007), 3042-3052.
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EJ networks

Another research group who came up with a closed related
family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for
metrics induced by circulant graphs, IEEE Transactions on
Information Theory 53 (2007), 3042-3052.

o p=(1++-3)2

Z|p] = {x+ yp: x,y € Z} (Eisenstein-Jacobi integers)
o = a-+ bpe Z[p\{0)

N(a) = a® + ab + b? (norm)

Zlpla = Z[p]/(c)

Ho = {£[1]a, £[p]a; i[pz]a}
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Another research group who came up with a closed related
family of graphs:

C. Martinez, R. Beivide and E. Gabidulin, Perfect codes for
metrics induced by circulant graphs, IEEE Transactions on
Information Theory 53 (2007), 3042-3052.

Frobenius ° p= (]_ —+ «/*3)/2

versus
Eisenstein-

e Z|p] = {x+ yp: x,y € Z} (Eisenstein-Jacobi integers)
o = a-+ bpe Z[p\{0)
N(a) = a® + ab + b? (norm)
Zlpla = Z[p]/(@)
o Ho = {£[1]a, £[pla, £[?la}
Definition
EJ network: EJy = Cay(Z[p)a, Ha)
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Theorem
(Thomson and Zhou 08-12+)

{6-regular first kind Frobenius circulants}
{EJatbp : N(a+ bp) =1 mod 6, a and b coprime}
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Theorem
(Thomson and Zhou 08-12+)

{6-regular first kind Frobenius circulants}
= {EJaypp: N(a+bp)=1 mod 6, a and b coprime}

We do not know whether non-Frobenius EJ networks also
admit ‘perfect’ routing, gossiping and broadcasting schemes.
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Covers

Theorem
(Thomson and Zhou 08-12+)
Let «, B € Z|p] be nonzero such that N(«) > 7.

Then EJ,p is an N(B)-fold cover of EJ, and can be
constructed from EJ,,.

Corollary

(Thomson and Zhou 08-12+)
Let o =c+dpeZ[p] with7 < N(a) =1 mod 6 that is not
an associate of any real integer. Denote

¢ =gcd(c,d), ' =c/t,d =d/t, o/ =" +dp.

Then EJ, is an ¢?>-fold cover of a 6-regular first-kind Frobenius
circulant that is isomorphic to EJ,.
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Theorem

(Thomson and Zhou 08-12+)

Let n = 7 be an integer all of whose prime factors are
congruent to 1 modulo 6.

Let m be a proper divisor of n.

Then any first-kind Frobenius TL,(a,a —1,1) is an n/m-fold
cover of a smaller first-kind Frobenius TLpy(am,am — 1,1).
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Rotational Cayley graphs

A complete rotation of Cay(K,S) is an automorphism w of K
which fixes S setwise and induces a cyclic permutation on S.

An element g € K is a fixed point of w if g # 1 and there
exists i such that g’ = g.
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Rotational Cayley graphs

A complete rotation of Cay(K,S) is an automorphism w of K
which fixes S setwise and induces a cyclic permutation on S.

An element g € K is a fixed point of w if g # 1 and there
exists i such that g’ = g.

Theorem

(Bermond, Kodate and Pérennes 1996)

If Cay(K, S) admits a complete rotation whose fixed point set
is an independent set and not a vertex-cut, then

{(Cay(K, S)) = [’K"S_’ 1] .
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Theorem

(Zhou 2009)

Let Cay(K,S) be a connected Cayley graph. Suppose that
there exists H < Aut(K) that

e H fixes S setwise and is regular on S;

o K\({xe K : Hy =1} u{1}) is an independent set and not
a vertex-cut of I.

Rotational

circulants and Then
Mendelsohn

designs t(Cay(K,S)) = PK||5_| 1].
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Classification of rotational
first-kind Frobenius circulants

Theorem

(A. Thomson and S. Zhou 2013+)

Let n=pi*...p" and D = gcd(p1 —1,...,p1 — 1).

(a) 3 a rotational first-kind Frobenius circulant with kernel Zi,
and degree d iff n is odd and d is an even divisor of D.

(b) ¢(d)'=t such circulants (pairwise non-isomorphic)

(c) Each is isomorphic to Cay(Z,,{[h])), where
h=>"_, ﬁb,-h,-, with b;(n/pf) =1 (mod p&') and
hi = n;’”“)(p’l)/d (mod p") for a fixed primitive root n;

modulo p{’ and an integer m; coprime to d.



From
Frobenius,
Eisenstein,

Jacob to
Mendelsohn

Rotational
circulants and
Mendelsohn
designs

Balanced regular Cayley maps

Definition

A map is a 2-cell embedding of a connected graph on an
orientable surface.

A cyclic permutation p of S induces a natural embedding of
Cay(G,S), giving a Cayley map M = CM(G, S, p).

M is balanced if p(s~1) = p(s)~! for s€ S, and regular if
Aut(M) is regular on the set of arcs of Cay(G, S).



From
Frobenius,
Eisenstein,

Jacob to
Mendelsohn

Rotational
circulants and
Mendelsohn
designs

Balanced regular Cayley maps

Definition

A map is a 2-cell embedding of a connected graph on an
orientable surface.

A cyclic permutation p of S induces a natural embedding of
Cay(G,S), giving a Cayley map M = CM(G, S, p).

M is balanced if p(s~1) = p(s)~! for s€ S, and regular if
Aut(M) is regular on the set of arcs of Cay(G,S).

Complete rotation in a Cayley graph < 2-cell embedding on a
closed orientable surface as a balanced regular Cayley map
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Balanced regular Cayley maps

Definition
A map is a 2-cell embedding of a connected graph on an
orientable surface.

A cyclic permutation p of S induces a natural embedding of
Cay(G,S), giving a Cayley map M = CM(G, S, p).

M is balanced if p(s~1) = p(s)~! for s€ S, and regular if
Aut(M) is regular on the set of arcs of Cay(G,S).

Complete rotation in a Cayley graph < 2-cell embedding on a
closed orientable surface as a balanced regular Cayley map

Theorem

(A. Thomson and S. Zhou 2013+)

We know exactly when a first-kind Frobenius circulant can be
embeded on a closed orientable surface as a balanced regular
Cayley map.
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Mendelsohn through Frobenius

Definition

()

A (v, k,\)-Mendelsohn design, (v, k, A\)-MD, consists of a
set X of v points and a collection B of cyclically ordered
k-subsets (blocks) of X such that every ordered pair of
points are consecutive in exactly A blocks.

A (v, k,\)-MD (X, B) is (-fold perfect if, for t = 1,...,¢,
every ordered pair of elements of X appears t-apart in
exactly A blocks. A (v, k, A)-MD is perfect,

(v, k,\)-PMD, if it is (k — 1)-fold perfect.

A (v, k,\)-MD is resolvable, (v, k,\)-RMD, if v=10
mod k and the set of blocks can be partitioned into

A(v — 1) parts each containing v/k pairwise disjoint
blocks, or v=1 mod k and the set of blocks can be
partitioned into Av parts each containing (v — 1)/k
pairwise disjoint blocks.
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Theorem
(F. D. Hsu and S. Zhou 2013+)

(a) A (v, k,1)-RMD exists for all integers v = 3,k = 2 with
v=1 mod k such that there exist a finite Frobenius

group K.H with order |K| = v and an element ¢ of H
with order k.

(b) This (v, k,1)-RMD is (p(k) — 1)-fold perfect, where p(k)
is the smallest prime factor of k.

(c) If k is a prime, then it is a (v, k,1)-RPMD.
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Theorem

(F. D. Hsu and S. Zhou 2013+)

(a) A (v, k,1)-RMD exists for all integers v = 3,k = 2 with
v=1 mod k such that there exist a finite Frobenius
group K.H with order |K| = v and an element ¢ of H
with order k.

(b) This (v, k,1)-RMD is (p(k) — 1)-fold perfect, where p(k)
is the smallest prime factor of k.

(c) If k is a prime, then it is a (v, k,1)-RPMD.

Theorem

(F. D. Hsu and S. Zhou 2013+)

Let v =pi...p{" = 3. A (v, k,1)-RPMD exists for every
prime factor k ofgcd( —1,...,pff —1).



From
Frobenius,
Eisenstein,

Jacob to
Mendelsohn

Rotational
circulants and
Mendelsohn
designs

Corollary

(F. D. Hsu and S. Zhou 2013+)

Let k be a fixed prime.

For any primes pi,---,pt =1 mod k and any integers
e1,...,e =1, there exists a (p* ... pgt, k, 1)-RPMD.

By the well known Dirichlet prime number theorem, there are
infinitely many primes congruent to 1 modulo k.
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